Welcome
Tàiyángnéng guāngfú-guānyú guāng rè fùhé jìshù de yìngyòng tàiyángnéng guāngfú fādiàn yǔ tàiyángnéng rè shuǐ lìyòng, lìlái fēn shǔyú tàiyángnéng guāngdiànlìyòng hé tàiyángnéng guāng rè lìyòng liǎng gè bùtóng lǐngyù de tàiyángnéng lìyòng zhuānyè. Chángqí yǐlái, cóng kēyán dào shēngchǎn dōu yǒu yángé de fēngōng bìng zì chéng tǐxì. Gù zhìjīn zhōngguó wài dōu méiyǒu chūxiàn jiāng liǎng zhě hé èr wéiyī zònghé lìyòng de jìshù jíqí chǎnpǐn. Qíshí, tàiyángnéng guāngfú, guāng rè jiéhé shì tàiyángnéng zònghé yìngyòng de zhòngyào fāzhǎn fāngxiàng. Yīnwèi guāngfú lìyòng de tàiyáng fúshè néng zhǔyào qǔ zì tàiyángguāng de duǎnbō zǐwài bōduàn, ér tàiyáng rè lìyòng zhǔyào shōují de shì tàiyáng fúshè néng de hóngwài bōduàn, liǎng zhě bìng bù chōngtú. Cóng lǐlùn shàng shuō, zhǐyǒu tōngguò guāngfú-guāng rè fùhé xìtǒng de zònghé lìyòng, cáinéng zài xiāngtóng miànjī shèbèi xià, huòdé zuìdà huà de tàiyáng fúshè néng de lìyòng xiàolǜ. Zhòngsuǒzhōuzhī, tàiyáng diànchí suǒ chǎn diànlì, yǔ tàiyáng fúshè qiángdù jí diànchí miànjī chéng zhèngbǐ. Guāngdiàn zhuǎnhuàn xiàolǜ zé yǔ tàiyángguāng de bōcháng, fúshè qiángdù jí diànchí wēndù zhíjiē xiāngguān, fǎn'ér yǔ diànchí miànjī de dàxiǎo méiyǒu zhíjiē de guānxì: Tàiyáng diànchí de shūchū gōnglǜ jùyǒu yīgè fù de wēndù xìshù, shūchū gōnglǜ suí huánjìng wēndù de shēng gāo ér jiàngdī; zài tàiyáng zhàoshè xià suízhe jīng guī diànchí bǎn wēn de shēng gāo, guāngfú zhuǎnhuàn xiàolǜ huì dà fúdù xiàjiàng; duì zhèngcháng zhuǎnhuàn xiàolǜ jǐn wèi bǎi fēn zhī shí jǐ de jīng guī diànchí bǎn, měi gè bǎifēndiǎn dōu shì jí qí kěguì de. Yīncǐ, zài wúfǎ kòngzhì tàiyáng fúshè qiángdù de qíngkuàng xià, rúhé wéichí guāngfú diànchí wěndìng de guāngdiàn zhuǎnhuàn xiàolǜ, shèng xià kě gōng xuǎnzé de bànfǎ, jiùshì rúhé yǒuxiào de lěngquè zài yángguāngfú zhào xià de guāngfú diànchí, yǐ jiàngdī guāngfú diànchí de yùnxíng wēndù. Chángqí yǐlái, wèile quèbǎo guāngfú diànchí zài tàiyáng qiáng fúshè xià néng zài dīwēn zhuàngtài xià chángnián yùnxíng, chéngwéi guójì guāngfú jiànzhú fēnbùshì diànzhàn chángqí guānzhù hé nǔlì gōngkè de rèdiǎn, nándiǎn hé zhòngdiǎn. Wèile jiàngdī guāngfú diànchí zǔ de gōngzuò wēndù, rénmen tōngcháng lìyòng fúshè huò duìliú sànrè de fāngshì, lái lěngquè guāngfú diànchí zǔjiàn. Lìrú: Zài guāngfú diànchí bèimiàn jiā zhuāng jīnshǔ sànrè piàn; zēngshè kōngqì sànrè tōngdào; huò pūshè qiángzhì shuǐlěng xìtǒng; yǐjí tú dù jùyǒu gāo fāshè lǜ de biǎomiàn tú céng děng. Shàngshù cuòshī chángqí dé bù dào tuīguǎng lìyòng de guānjiàn, shì jū gāo bùxià de chéngběn hé rùbùfūchū de néng hào. Yào xiǎng zài yīgè dānwèi miànjī de guāngfú diànchí hòumiàn, wèi jiàngdī 2-3 gè bǎifēndiǎn de guāngdiàn zhuǎnhuàn shēngwēn xiàolǜ sǔnshī, ér cǎiyòng ānzhuāng qiángzhì fēng lěng huò shuǐlěng sànrè xìtǒng, suǒ xū zēngjiā de zàojià chéngběn hé wéichí xìtǒng yùnzhuǎn suǒ xū xiāohào de diàn lì, yǔ guāngfú diànchí xìtǒng de shēngwēn zàochéng de xiàolǜ sǔnshī xiāng bǐ, wánquán débùchángshī. Xiǎoxíng fēnbù shì diànzhàn rúcǐ, dàxíng guāngfú diànzhàn gèng shì rúcǐ. Yījù huà, shàngshù jǐ zhǒng bànfǎ yuánlǐ shàng sìhū dōu kěxíng, dàn shìshí shàng què bìng bù jùbèi zài shíjì shēngchǎn yìngyòng zhōng, qǔdé bìyào de jìshù jīngjì xiàoyì de kěxíng xìng. Yào jiějué shàngshù nántí, cóng lǐlùn shànglái shuō fēicháng jiǎndān, nà jiùshì zhǐyào zhǎodào yī zhǒng bànfǎ: Zài bù xiāohào fǔzhù néngyuán tígōng xúnhuán dònglì de qiántí xià, jiù néng yǒuxiào de jiāng guāngfú diànchí zài rìzhào xià chǎnshēng de “fèirè” yǒuxiào de zhìhuàn chūlái; bìng zài wéichí guāngfú diànchí chángqí dīwēn yùnzhuǎn de tóngshí, hái néng jiāng suǒ shōují dào de “fèirè” zhuǎnbiàn wèi yǒuyòng de rènéng jiāyǐ huíshōu lìyòng, bìng ràng qí zhěnggè xìtǒng suǒ huòdé (guāngdiàn zhuǎnhuàn bù shuāi hé yǒuxiào rèliàng huíshōu lìyòng) de jìshù jīngjì xiàoyì, zúyǐ bǔcháng suǒ xū zēngjiā de cáiliào shèbèi tóuzī. Xiǎnrán, fāngfǎ kěnéng bìng bù shì wéi yī de; dàn zhǐyào shéi néng yǐ zuì jiǎndān, zuì wěntuǒ, zuì kěkào de bànfǎ, shíxiàn shàngshù mùbiāo, wǒmen jiù néng rèndìng, shéi zuì hǎo de jiějuéle zhè yī “shìjiè xìng de nántí”. 2003 Nián kūnmíng nánkāi néngyuán yán jiù yuàn zài zìzhǔ jìnxíng tàiyáng rèshuǐqì zìrán xúnhuán xìtǒng jíchéng jìshù de yánfā zhōng, shuàixiān túpòle néng zài yīkuài zǒng hòudù bù chāoguò 68mm de píngbǎn xíng tàiyáng jí rè qì fànwéi nèi, shíxiànle jiāng zhěnggè zìrán xúnhuán gāoxiào huàn rè jīzhì, xìtǒng jíchéng zài gèng báo de biǎn hé shì bǎn xīn zhī nèi, cóng'ér wéi yǒuxiào de jiějué guāngfú diànchí de zìrán xúnhuán shuǐ lěngquè sànrè nántí, zhǎodàole yīgè quánxīn dì túpòkǒu. Zài “shíyīwǔ” qíjiān, kūnmíng nánkāi néngyuán yán jiù yuàn yǔ yúnnán tiān dá yáng guāng liánhé xiàng kējì bù hé yúnnán shěng kējì tīng shēnbàole “tàiyáng diànchí yǔ jiànzhú jiéhé de gōngchéng shèjì hé shìfàn—yǒu yúnnán tèsè de tàiyángnéng guāngfú jiànzhú” guójiā zhòngdiǎn xiàngmù; wánchéng gāi xiàngmù xūyào túpò dì jìshù wèi: Shǒuxiān, yào kāifā chū yī zǔ biāozhǔnhuà shēngchǎn de tàiyángnéng guāngfú fādiàn yì rèshuǐqì fùhé zǔjiàn; shíxiàn guī tàiyáng diànchí zài jìnxíng guāngfú fādiàn shí, tóngbù tōngguò shuǐ de wú yuán zìrán xúnhuán gōngnéng, jiāng qí suǒ chǎnshēng de fèirè yǒuxiào de zhìhuàn chūlái, yǐ wéichí guāngfú diànchí chángqí zuì jiā de gōngzuò huánjìng wēndù; quèbǎo guāngfú diànchí shūchū gōnglǜ, bù yīn diànchí wēndù fù xiàoyìng de shēng gāo ér xiàjiàng. Qícì, zǔjiàn tōngguò zìrán xúnhuán xìtǒng shōují dào de tàiyáng diànchí fèirè, yào néng jíshí dì zìdòng zhuǎnyí chūlái, bìng jìnyībù jiāng qí tíshēng dào shēnghuó rè shuǐ shè dìng de 45℃yǐshàng de dábiāo wēndù, zuìhòu zìdòng jìnrù dào bǎowēn chǔ rè shuǐ xiāng zhōng chúcún dài yòng. Zàicì, zuòwéi tàiyángnéng guāngfú fēnbù shì diànzhàn, hái bìxū jùbèi yǔ guójiā gōngdiàn xìtǒng bìng wǎng yùnxíng de gōngnéng. Zuìhòu, zài fēnbù shì diànzhàn jiànshè ānzhuāng shàng, yào shíxiàn tàiyángnéng guāngfú fādiàn yì rèshuǐqì fùhé zǔjiàn, yǔ mínzú mínjū jiànzhú, tèbié shì tǔmù jiégòu de zhōngshì nóngcūn wǎ miàn pō wūdǐng jiànzhú, shíxiàn jiànzhú yītǐ huà de xiétiáo ānzhuāng děng sì dà nàn tí. Jīngguò chíxù de nǔlì fèndòu, zuìzhōng kūnmíng nánkāi néngyuán yán jiù yuàn yǐ dúlì huòdé “tàiyángnéng guāng fú fādiàn-rèshuǐqì fùhé zǔjiàn jí xìtǒng “biǎn hé shì xìtǒng jíchéng tàiyáng rèshuǐqì”; děng liǎng xiàng fāmíng zhuānlì hé wǔ xiàng shíyòng xīnxíng zhuānlì “fàng qì zhǐ shuǐ fá “duō gōngnéng píngbǎn jí rè qì biānkuāng xíngcái guǎn bǎnshì xìtǒng jíchéng tàiyáng rèshuǐqì “tàiyángnéng wǎ miàn pō wūdǐng zhuānyòng suǒ gù zhījià “píngbǎn xíng xìtǒng jíchéng jiāyòng tàiyáng rèshuǐqì” de yánfā chéngguǒ yú yúnnán tiān dá yáng guāng yīqǐ wánchéngle gāi xiàngmù gōngguān, bìng shùnlì tōngguòle kējì bù de xiàngmù yànshōu. Yuèdú gèng duō: Shuāng tǒng hōng gān jī de fǎ zhǎn hé yìngyòng shì zěnyàng de? 展开 1,910 / 5,000 翻译结果 Solar Photovoltaic - Application of Photothermal Composite Technology

Solar Photovoltaic – Application of Photothermal Composite Technology

Solar photovoltaic power generation and solar hot water utilization have always been divided into two different fields of solar energy utilization: solar photovoltaic utilization and solar thermal utilization. For a long time, there has been a strict division of labor and a self-contained system from scientific research to production. Therefore, there is no technology or product that combines the two into one comprehensive utilization in China and abroad. In fact, the combination of solar photovoltaic and photothermal is an important development direction for the comprehensive application of solar energy. Because the solar radiation energy used by photovoltaics is mainly taken from the short-wave ultraviolet band of sunlight, and the solar thermal utilization mainly collects the infrared band of solar radiation energy, the two do not conflict. Theoretically, only through the comprehensive utilization of photovoltaic-photothermal composite system, can the maximum utilization efficiency of solar radiation energy be obtained under the same area of ​​equipment.

As we all know, the electricity produced by a solar cell is proportional to the intensity of solar radiation and the area of ​​the cell. Photoelectric conversion efficiency is directly related to the wavelength of sunlight, radiation intensity and battery temperature, but not directly related to the size of the battery area: the output power of the solar cell has a negative temperature coefficient, and the output power increases with the increase of the ambient temperature. Reduced; with the increase of the temperature of the crystalline silicon panel under the sun, the photovoltaic conversion efficiency will drop significantly; for the crystalline silicon panel with a normal conversion efficiency of only ten percent, every percentage point is extremely valuable .

Therefore, when the intensity of solar radiation cannot be controlled, how to maintain the stable photoelectric conversion efficiency of photovoltaic cells, the remaining alternative is how to effectively cool the photovoltaic cells under sunlight to reduce the operation of photovoltaic cells. temperature. For a long time, in order to ensure that photovoltaic cells can operate in a low temperature state all year round under strong solar radiation, it has become a hot spot, difficulty and focus that the international photovoltaic building distributed power station has been concerned about and strived to overcome for a long time. In order to reduce the operating temperature of photovoltaic cells, people usually use radiation or convection heat dissipation to cool photovoltaic cell modules. For example: installing metal heat sinks on the back of photovoltaic cells; adding air cooling channels; or laying forced water cooling systems; and coating surface coatings with high emissivity, etc.

The key to the long-term failure of the above-mentioned measures to be popularized and utilized is the high cost and the energy consumption that cannot make ends meet. In order to reduce the loss of photoelectric conversion heating efficiency by 2-3 percentage points behind a photovoltaic cell of a unit area, installing a forced air cooling or water cooling cooling system will increase the cost of construction and the consumption required to maintain the operation of the system. Electricity, compared with the efficiency loss caused by the heating of the photovoltaic cell system, is completely worth the loss. This is true for small distributed power plants, and even more so for large photovoltaic power plants. In a word, the above methods seem to be feasible in principle, but in fact they do not have the feasibility of obtaining the necessary technical and economic benefits in practical production applications.

To solve the above problems, it is theoretically very simple, that is, as long as a way is found: on the premise of not consuming auxiliary energy to provide circulating power, the “waste heat” generated by photovoltaic cells under sunlight can be effectively replaced. And while maintaining long-term low-temperature operation of photovoltaic cells, it can also convert the collected “waste heat” into useful heat energy for recycling, and make it available to the entire system (photoelectric conversion is not decayed and effective heat recovery and utilization) The technical and economic benefits are sufficient to compensate for the increased investment in materials and equipment. Obviously, the method may not be the only one; but as long as who can achieve the above goal in the simplest, safest and most reliable way, we can determine who can best solve this “worldwide problem”.

Figure 1 - The experimental demonstration system of solar photovoltaic-photothermal composite utilization in Yunnan ethnic dwellings
Figure 1 – The experimental demonstration system of solar photovoltaic-photothermal composite utilization in Yunnan ethnic dwellings

In 2003, Kunming Nankai Energy Research Institute took the lead in the research and development of natural circulation system integration technology for solar water heaters, and took the lead in breaking through the scope of a flat solar collector with a total thickness of no more than 68mm, realizing the efficient conversion of the entire natural circulation. Thermal mechanism, the system is integrated in a thinner flat box core, thus finding a new breakthrough for effectively solving the problem of natural circulating water cooling and heat dissipation of photovoltaic cells.

During the “Eleventh Five-Year Plan” period, Kunming Nankai Energy Research Institute and Yunnan Tianda Sunshine jointly applied to the Ministry of Science and Technology and the Yunnan Provincial Department of Science and Technology to declare the “Engineering Design and Demonstration of the Combination of Solar Cells and Buildings – Solar Photovoltaic Buildings with Yunnan Characteristics” National Key projects; the technologies that need to be broken through to complete this project are: first, to develop a set of standardized production of solar photovoltaic power generation-water heater composite components; to realize the passive natural circulation function of silicon solar cells synchronously passing water during photovoltaic power generation, The waste heat generated by it is effectively replaced to maintain the long-term optimal working environment temperature of the photovoltaic cell; to ensure that the output power of the photovoltaic cell does not decrease due to the increase of the negative effect of the battery temperature. Secondly, the solar cell waste heat collected by the module through the natural circulation system must be automatically transferred out in real time, and further raised to the standard temperature of 45°C or higher set by the domestic hot water, and finally automatically entered into the thermal insulation hot water storage tank. stored for use. Thirdly, as a solar photovoltaic distributed power station, it must also have the function of grid-connected operation with the national power supply system. Finally, in the construction and installation of distributed power stations, it is necessary to realize four major problems, such as the coordinated installation of solar photovoltaic power generation and water heater composite components, and the coordinated installation of building integration with ethnic residential buildings, especially Chinese-style rural tile roof buildings with civil structure.

Figure 2 - A new technology teacher system for photovoltaic-photothermal composite utilization installed in a primary school in a poverty-stricken mountainous area of Yunnan
Figure 2 – A new technology teacher system for photovoltaic-photothermal composite utilization installed in a primary school in a poverty-stricken mountainous area of Yunnan

After continuous hard work, Kunming Nankai Energy Research Institute finally independently obtained “Solar Photovoltaic Power Generation-Water Heater Composite Components and System “Flat Box System Integrated Solar Water Heater”; and other two invention patents and five utility model patents “Degassing Stopper” The research and development results of water valve “multi-functional flat plate collector frame profile tube plate system integrated solar water heater” special locking bracket for solar tile sloping roof “flat plate system integrated household solar water heater” and Yunnan Tianda Sunshine completed the project. , and successfully passed the project acceptance of the Ministry of Science and Technology.

Read more: What is the development and application of double drum dryer?